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Figure 1: Modal sound vs. our Deep-Modal sound: For a 3D object of arbitrary shape, prior synthesis algorithms (top) perform
expensive modal analysis preprocessing. Our novel learning-based synthesis algorithm, Deep-Modal, can generate impact
sounds in real-time without processing on modal analysis.

ABSTRACT
Model sound synthesis is a physically-based sound synthesismethod
used to generate audio content in games and virtual worlds. We
present a novel learning-based impact sound synthesis algorithm
called Deep-Modal. Our approach can handle sound synthesis for
common arbitrary objects, especially dynamic generated objects, in
real-time.We present a new compact strategy to represent the mode
data, corresponding to frequency and amplitude, as fixed-length
vectors. This is combined with a new network architecture that can
convert shape features of 3D objects into mode data. Our network
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is based on an encoder-decoder architecture with the contact po-
sitions of objects and external forces embedded. Our method can
synthesize interactive sounds related to objects of various shapes
at any contact position, as well as objects of different materials
and sizes. The synthesis process only takes 0.01s on a GTX 1080 Ti
GPU. We show the effectiveness of Deep-Modal through extensive
evaluation using different metrics, including recall and precision of
prediction, sound spectrogram, and a user study.
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1 INTRODUCTION
In virtual reality and multimedia applications, modal synthesis is
widely used for physically-based audio content generation [18, 24,
37, 38]. These modal synthesis methods calculate characteristic
vibration modes according to the shape and material properties of
an object instead of using any pre-recorded audio samples. This
process is also called modal analysis. The key to modal analysis is
producing a generalized eigenvalue decomposition of large sparse
mass and stiffness matrices, which is computationally expensive
(time cost varies from seconds to hours depending on the scale of
the finite elements) and should be performed in the offline stage, as
illustrated at the top of Figure 1. Pre-processed modal data of a 3D
object (including the eigenvalue and the eigenvector) are stored for
each object and used to synthesize sound at run-time, whenever a
contact event occurs at the contact position with a specific force.

Traditionally, the precomputed modal data depends strongly
on the shape, size, and material of a 3D object. Each object in
a scene generally requires computing expensive, object-specific
modal data. Subsequently, many researchers have proposed ap-
proximate techniques that apply the modal data of one object to
objects with different sizes or materials, but the same geometric
shape [26, 48]. However, these modal analysis based methods are
incapable of dealing with new objects with arbitrary shapes such as
fracture or deformable objects in runtime applications. Therefore,
it is preferable for real-time algorithms to synthesize sounds for
such objects without any preprocessing and these methods require
further investigation.

Main Contributions: we overcome these major limitations of
prior modal synthesis methods and present a novel learning-based
approach that can handle arbitrary objects with different shapes,
sizes, and materials in real-time without preprocessing on modal
analysis. We present a sound synthesis network, Deep-Modal, that
can convert the shape features of 3D objects into mode data (a
compact representation) to facilitate the sound synthesis and audio
content generation in real-time (see the bottom of Figure 1). Overall,
our main contributions include:

• We present a novel learning-based method that can synthe-
size impact sound with high efficiency. To the best of our
knowledge, this is the first approach that can synthesize in-
teractive sound of an object with different shapes in real-time
without preprocessing on the modal analysis of an object.
• We design a novel Deep-Modal network that converts the
shape features of 3D objects into compact mode data that
can be used to synthesize a sound signal.
• Our network is a lightweight network and can synthesize re-
liable results close to the ground truth. Any common objects
with different shapes, sizes, or materials can be available to
synthesize the impact sound at any contact position with
an external force. Our method can handle unseen objects in
highly dynamic scenes in real-time. We highlight the perfor-
mance on complex benchmarks.

2 RELATEDWORK
We briefly review the related aspects of modal synthesis and deep
learning models for sound synthesis.

2.1 Modal Synthesis
For offline applications, wave-based methods can produce high-
quality sound [41]. For interactive virtual environments, modal syn-
thesis [18, 24, 38] has beenwidely used for rigid-body objects. Modal
analysis methods compute the characteristic vibration modes of a
3D object using eigendecomposition-based preprocessing. Based
on modal sound synthesis, richer sound effects such as knocking,
sliding, and friction on 3D objects can be simulated [37]. Other tech-
niques are based on precomputed acoustic transfer [11] to generate
more realistic sounds. The modal analysis techniques have also
been combined with sound propagation [2, 25, 28]. Acceleration
noise synthesis [4] was proposed to synthesize sounds produced
when an object experiences abrupt rigid-body acceleration. More ac-
curate damping models [30, 31] and contact models [49] have been
proposed. Many techniques have also been proposed to accelerate
the performance of modal sound synthesis. These methods include
using the parallel computing capabilities of the GPU to accelerate
the speed of the run-time stage [46] and using an approximation to
reduce the computational complexity [3].

However, the computation of modal analysis strongly depends
on the shape, size, and material parameters of a 3D object, so the
generated modal data is object-specific. Zheng et al. [48] proposed
a method to simulate sound models for all scaled versions of a
rigid body with the same shape. To simulate fracture sounds, they
used fragmented pre-processed modal data to synthesize the sound
of fragments with different sizes, and they approximated all the
fragments’ shapes using ellipses to avoid the shape dependence of
the soundmodal. Z. Ren et al. [26] point out the correlation between
eigenvalue and material coefficients, meaning that a modal data
can be applied to objects with different materials. However, these
modal analysis-based preprocessing methods are still constrained
by geometric shape dependence, i.e. one set of modal data is only
applicable to one geometric shape for the 3D object. In contrast to
these methods, our approach is general and applicable to arbitrary
3D objects with no constraints on shape, size, or material properties.

2.2 Deep Learning Methods
There has been a lot of work exploring three-dimensional geometric
features learning, including perspective-based methods [12, 33],
which generate a corresponding image through some specified
perspectives and regard the combination of 2D image features as a
3D geometry feature; voxel-based methods [15, 22, 44]; and point
cloud-based methods [21, 23, 43].

Recently, there has also been a considerable amount of work us-
ing neural networks to deal with audio, producing methods such as
WaveNet [39], Tacotron [42], and Tacotron 2 [29], which use neural
networks to convert text features into audio features to perform
end-to-end speech synthesis. In particular, some works focus on
audio-visual connected deep learning. A recurrent neural network
was used to predict audio features from video [19], and the impact
sound of an object being struck can be used to improve the accu-
racy of object classification using ISNN [32]. Ephrat et al. [6] built
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a network-based model for speaker-independent speech separation
by converting the audio-visual features. The neural network is also
employed for physics-based sound-related simulation, as proposed
in [7, 20, 34, 35] for sound propagation and in [47] for predicting
the shape of the colliding object through the simulated sound.

Our learning-based algorithm is alsomotivated by thesemethods,
building the audio-visual connection on the problem ofmodal sound
synthesis and designing a lightweight network.

3 FOUNDATION
We first introduce the foundations of modal sound synthesis. We
begin with the linear deformation equation for a 3D linear elastic
dynamics model [26]:

M¥x + C¤x + Kx = f, (1)

where x is nodal displacements and M,C = 𝛼M + 𝛽K,K represent
the mass, Rayleigh damping, and stiffness matrices, respectively. f
represents the external force, which stimulates the vibrations.

Through generalized eigenvalue decomposition KU = ΛMU, the
system can be decoupled into the following form [26]:

¥q + (𝛼I + 𝛽Λ) ¤q + Λq = U𝑇 f, (2)

where Λ is a diagonal matrix and q satisfies x = Uq. The solution
to Equation 2 is a bank of damped sinusoidal waves. Each wave
represents a mode. The 𝑖’th mode is:

𝑞𝑖 = 𝑎𝑖𝑒
−𝑐𝑖𝑡 sin (2𝜋𝜔𝑖𝑡 + 𝜃𝑖 ) , (3)

where 𝜔𝑖 is the frequency of the mode (damped natural frequency),
𝑐𝑖 is the damping coefficient, 𝑎𝑖 is the excited amplitude, and 𝜃𝑖 is
the initial phase. We currently directly use the vibration modes for
sound synthesis [18, 24, 36, 37] because we treat the sound source as
a point without considering the effect of the acoustic transfer[11].

As the object begins at rest and is then struck at 𝑡 = 0, we can
assume 𝜃𝑖 to be zero. Solving Equation 2, we get

𝑐𝑖 =
1
2
(𝛼 + 𝛽𝜆𝑖 ) , (4)

𝜔𝑖 =
1
2𝜋

√
𝜆𝑖 −

(
𝛼 + 𝛽𝜆𝑖

2

)2
, (5)

where 𝜆𝑖 represents the i-th mode eigenvalue. Therefore, the damp-
ing coefficient 𝑐𝑖 can be solved when material properties (𝛼, 𝛽) and
frequency (𝜔𝑖 ) are known. We only focus on the frequency and
amplitude of the modes.

As the number of modes varies with different objects, it is diffi-
cult to represent modes with fixed-length vectors. KleinPAT [40]
accelerates acoustic transfer precomputation by packing modes
into several partitions, which need a time-domain algorithm and
are not applicable to modal analysis. We fix the lengths of mode
vectors that is similar to the strategy described in [24]. We pack
modes into sub-bands that are evenly distributed on the Mel-scale
due to their perceptual similarity. Modes in a sub-band are packed
into a compact mode by summing up the amplitudes. The frequency
of the compact mode is the central frequency of the sub-band.

We use a vector to represent the amplitude of all compact modes.
As the frequencies of the modes are discrete, there are some sub-
bands with no modes inside, meaning that the corresponding com-
pact modes are empty. We use another binary vector as a mask for

compact modes: 1 indicates the compact mode is nonempty and 0
indicates empty. These two vectors have fixed lengths, and we use
them to represent a mode.

Simply regressing on the amplitude in each Mel sub-band will
lead to over-smoothed results, which is also indicated in the work
of speech synthesis [29]. We use the form of the binary mask to
reduce over-smoothness as the amplitude in empty compact mode
can be discarded by the binary mask. We set the amplitude in an
empty compact mode as the amplitude of the nearest non-empty
one. This is a trick to make network regression easier without
affecting correctness. Figure 2 shows how we convert the origin
mode data to amplitude and mask, which is used in our method.
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Figure 2: Illustration of compact mode data: A compressed
form of conversion from the origin mode to amplitude and
mask for our learning-based approach.

4 DEEP-MODAL: OUR LEARNING METHOD
In principle, we formalized the physics-based rigid-body sound
synthesis process as a supervised learning problem. Our goal is to
correctly predict the audio signal according to the shape, material,
size, external force, and contact position of the object. With approx-
imation, the effect of the material and size on the sound can be
separated and can then be treated in independent post-processing
[26, 48]. In addition, the effect of external forces can be separated
as described in subsection 4.1. Following this strategy, we design
our network, which focuses on correctly predicting the impact
sound when the geometric shape and contact position are varied
and the size, material, and external force are fixed. Finally, we add
separate post-processing to deal with the variation in material, size,
and external force. The sound synthesis process can be formally
described as mapping g from input tuple x = {m, p} to estimate e
of ground-truth sound s. The input tuple includes 3D model m and
contact position p. We use a convolutional neural network parame-
terized by a set of weights 𝜽 to represent g. We use a large dataset
to obtain the optimal parameters �̂� through supervised learning.
The dataset contains 𝑁 pairs of input tuples and corresponding
sounds, D𝑁 =

{(
x1, s1

)
, . . . ,

(
x𝑁 , s𝑁

)}
. Our supervised learning

is to minimize the average distance between the prediction of the
network e = g (x;𝜽 ) and ground-truth sound s:

�̂� = argmin
𝜽

1
𝑁

𝑁∑
𝑛=1

ℓ
(
s𝑛, g

(
x𝑛 ;𝜽

) )
, (6)
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Figure 3: Architecture of our Deep-Modal sound synthesis. Our Deep-Modal network takes voxels as inputs and outputs a
sound feature map. A contact position-related sound feature is selected from the sound feature map. The sound feature is
viewed as a mask and log-amplitude, which are combined with an exciting force into compact modes. The compact modes are
post-processed to fit the input material and size. At runtime, we use these audio features to synthesize sound.

where ℓ is the loss function used to measure the distance between
two impact sounds. Next, we will introduce our method in detail.

4.1 Representation
Input Model. Generally, a mesh is used to represent a 3D object
for interactive applications. A conversion from mesh to volumetric
data using the finite element partition is necessary for modal sound
synthesis. The typical representation of the volume data includes
tetrahedral cells and hexahedral cells. The hexahedral cells can
also be regarded as a binary voxel representation used for the 3D
convolutional neural network, as described in [44]. The binary
voxel representation treats a 3D object as a probability distribution
of binary variables in the voxel grid. We therefore employ this
hexahedral form of representation, which can bridge modal sound
synthesis and deep learning, and each 3D object is represented
using a binary tensor: 1 indicates a voxel is inside the object, while
0 indicates a voxel is outside of the object (i.e. in space).
Sound feature. We first demonstrate how the effect of an external
force can be separated. In the modal synthesis method described
in section 3, any external force can be decomposed into the resul-
tant force from three orthogonals, i.e. a linear combination of unit
forces with the same contact position: f = 𝑘1f1 + 𝑘2f2 + 𝑘3f3. By
solving Equation 2, the amplitudes of modes a excited by f can be
decomposed into a linear combination of the amplitudes excited by
the unit force:

a = U𝑇 f ⊘ 𝝎

= U𝑇 (k1f1 + k2f2 + k3f3) ⊘ 𝝎

=

(
U𝑇 k1f1 ⊘ 𝝎

)
+
(
U𝑇 k2f2 ⊘ 𝝎

)
+
(
U𝑇 k3f3 ⊘ 𝝎

)
= 𝑘1

(
U𝑇 f1 ⊘ 𝝎

)
+ 𝑘2

(
U𝑇 f2 ⊘ 𝝎

)
+ 𝑘3

(
U𝑇 f3 ⊘ 𝝎

)
= 𝑘1a1 + 𝑘2a2 + 𝑘3a2,

(7)

where 𝝎 represents the frequencies of modes and the symbol ⊘
denotes element-wise division. a1, a2, a3 represent the amplitudes

of modes excited by unit force f1, f2, f3. Therefore, the effect of the
external force is separated. As the linear relationship of a, a1, a2, a3
remains after the compression of modes described in section 3, we
define our force-unrelated sound feature as three compact modes
excited by three unit forces. It should be noted that we regard
sub-bands with unexcited modes as having no modes inside, so
the binary mask of these compact modes can be different. We also
transformed amplitude to log-amplitude, which is consistent with
decibel.

Therefore, the ground-truth sound can be denoted as:

s = {(s1,𝑏 , s1,𝑎), (s2,𝑏 , s2,𝑎), (s3,𝑏 , s3,𝑎)},

and the prediction sound of the network can be denoted as:

e = {(e1,𝑏 , e1,𝑎), (e2,𝑏 , e2,𝑎), (e3,𝑏 , e3,𝑎)},

where s𝑖,𝑏 , s𝑖,𝑎 represent the mask and log-amplitudes of compact
modes excited by i-th unit force and each can be represented as a
vector of length𝑀 ;𝑀 is the number of all Mel sub-bands. Therefore,
we use a vector of length 6𝑀 to represent the feature of a sound.
The element in e is the estimation of corresponding element in s.

We employed loss function ℓ for sound feature as a combination
of mean squared error ℓ1 for log-amplitude and binary cross-entropy
loss ℓ2 for the mask:

ℓ (s, e) = 1
3

3∑
𝑖=1

(
𝜆1ℓ1 (s𝑖,𝑎, e𝑖,𝑎) + 𝜆2ℓ2 (s𝑖,𝑏 , e𝑖,𝑏 )

)
, (8)

where 𝜆1, 𝜆2 are tunable parameters representing the contribution
of log-amplitudes and masks.

Position p The specific position is usually not processed as the
input directly for position-related predictions in the neural network;
however, this position is generally used to make a retrieval from
the network output that includes all possible positions, such as in
image segmentation [14, 27] and human pose estimation [17, 45].
Inspired by these works, we employ a similar strategy to predict
position-related sounds.



Our neural network first predicts the audio features of all pos-
sible positions. These audio features form a feature map called a
sound feature map. Each component in this sound feature map has
an apple-to-apple correspondence with each voxel of a voxelized
model. Those contact positions located within a voxel are treated
as the same by approximation. For contact positions within a voxel,
the impact sound feature can be obtained by selecting the corre-
sponding component from the sound feature map. Each component
in the sound feature map is a vector with a length of 6𝑀 accord-
ing to our sound feature representation described above. For each
training object, the loss function ℓ in Equation 8 is the sum over all
possible contact position voxels to update the network weights. We
down-sample the possible impact locations to a lower resolution
than the input voxel model so that we can obtain higher speed at
the cost of accuracy.

4.2 Network Architecture
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Figure 4: Residual block used in our network. (a) stan-
dard residual block; (b) downsampling residual block when
stride=2 or skip connection when stride=1.

To predict position-related feature maps, an encoder-decoder
structure is generally used [14, 17, 27, 45]. Our network is also
designed based on such a structure, as shown in Figure 3. We em-
ploy the residual block [9] instead of the traditional convolutional
neural network to construct a deeper network without optimiza-
tion instabilities. The residual block contains three convolutional
layers and a skip connection as shown in Figure 4. In our network
architecture, the encoder part of the network is composed of a stack
of downsampling residual blocks (Figure 4(b)) and residual blocks
(Figure 4(a)), and the decoder part is composed of a stack of 3D
transposed convolutional layers. The encoder part is responsible for
extracting spatial features of different scales, and the decoder part
can convert the spatial features into audio features related to each
position. Skip connections are residual blocks (Figure 4(b)) used
to merge spatial features of different scales from the encoder. The
input of the network is a voxel representation of the 3D object, and
the output is a sound feature map. The number of output feature
channels is 6𝑀 according to our sound feature representation.

4.3 Post-processing
To synthesize impact sounds for objects of any material and size, a
post-processing stage is employed to integrate different material
parameters and sizes under approximation.

Network prediction sound feature is a vector of length 6𝑀 . This
vector can be regarded as 6 vectors of length 𝑀 according to our
sound feature representation e, as described in subsection 4.1.

Suppose the external force is f = 𝑘1f1 + 𝑘2f2 + 𝑘3f3. Amplitudes
a of compact modes after excitation can be obtained from e (value
should be first restored from log-amplitude to amplitude) and f :

𝑎𝑖 =

3∑
𝑗=1

𝑘 𝑗𝐻 (𝑒 𝑗,𝑏,𝑖 − 𝑡)𝑒 𝑗,𝑎,𝑖 , (9)

where the Heaviside function 𝐻 (·) returns 1 if the argument is pos-
itive and 0 otherwise. 𝑡 is a tunable threshold. 𝑒 𝑗,𝑏,𝑖 , 𝑒 𝑗,𝑎,𝑖 represent
the i-th element of mask e𝑗,𝑏 and amplitude e𝑗,𝑎 , respectively. When
the mask value 𝑒 𝑗,𝑏,𝑖 is greater than 𝑡 , the i-th sub-band is consid-
ered to contain an excited mode and its corresponding amplitude
should be retained; otherwise it should be discarded.

The damped natural frequency of a sub-band 𝝎 is the central
frequency of this sub-band. We convert it to an undamped natural
frequency before post-processing. To utilize mode data of fixed ma-
terial and size to synthesize sounds for objects of different materials
and sizes, we need to calibrate a, 𝝎 as follow.

Stiffness matrix K is linearly related to stiffness, and mass matrix
M is linearly related to the reciprocal of density. However, the
effect of Poisson’s ratio is more complicated. Inspired by a method
to estimate the feature of mode proposed by Z. Ren et al. [26] , we
only scale a, 𝝎 for stiffness and density. If the stiffness changes
from 𝐸 to 𝜎1𝐸 and the density changes from 𝜌 to 𝜎2𝜌 , then the
undamped natural frequency 𝝎 and amplitude a will be scaled as:

𝝎 ← 𝜎
1/2
1 𝜎

−1/2
2 𝝎, a← 𝜎

−1/2
2 a. (10)

As in the size scaling strategy of Zheng and James [48], if the
size changes from 𝑙 to 𝜎3𝑙 , then the undamped natural frequency
𝝎 and amplitude a will be scaled as:

𝝎 ← 𝜎−13 𝝎, a← 𝜎
−3/2
3 a. (11)

In summary, the scaling formula for changed materials and size is:

𝝎 ← 𝜎
1/2
1 𝜎

−1/2
2 𝜎−13 𝝎, a← 𝜎

−1/2
2 𝜎

−3/2
3 a. (12)

After scaling, we restore the undamped natural frequency 𝝎
back to the damped natural frequency. The damping coefficients c
can also be obtained. Finally, a, 𝝎, c can be used to synthesize the
waveform of sound 𝑆 through additive synthesis as:

𝑆 (𝑡) =
𝑀∑
𝑖=1

𝑎𝑖𝑒
−𝑐𝑖𝑡 sin(2𝜋𝜔𝑖𝑡) . (13)

where 𝑎𝑖 , 𝜔𝑖 , 𝑐𝑖 represent the element of a, 𝝎, c respectively, and𝑀
represents the number of Mel sub-bands.

5 EXPERIMENT AND RESULTS
5.1 Dataset and Implementation
First, we use modal synthesis [10] to generate our dataset. The
3D models are from ModelNet40 [44], which has already been
divided into a training set and a test set with sizes 9843 and 2468



respectively. We take out another 20% from the training set to use
as the validation set.

All 3D objects are set to be the same material with the same
scale when training. The hexahedral voxel representation of each
object has a resolution of 32 ×32 ×32. For those thin objects, i.e. the
thickness less than a voxel size, they will be processed with one-
voxel thickness. We apply modal sound synthesis to the hexahedral
voxel mesh of objects in the dataset.

Generally, the audible frequency range is 20HZ-20000HZ. How-
ever, through analysis, we find that objects with modes less than
100HZ only account for 0.6% of the dataset, and objects with modes
less than 10000HZ account for 99.9% of the dataset. Because higher
frequency modes in impact sound are less important due to rel-
atively large damping coefficients and lower perceptual distin-
guishability, we compress the frequency range in practice to 100HZ-
10000HZ to reduce the learning overhead.

The resolution of the sound feature map is set to 16 ×16 ×16, and
we set the number of Mel sub-bands as𝑀 = 32. We normalize the
log-amplitude to 0-1. For each model, we select all possible struck
positions in the sound feature map to generate a corresponding
sound feature. The echo combination of input voxel model, struck
position, and output sound feature is regarded as a data point, as
described in subsection 4.1. There are about 800,000 data points for
training, 200,000 for validation, and 200,000 for testing.

We use 𝜆1 = 𝜆2 = 1 for loss function. We train the network with
an Adam optimizer and a learning rate of 0.02, which is reduced
by half every 20 epochs. We set the batch size to 64 and train 100
epochs for convergence. The training process took around 4 hours.

5.2 Experiments and Evaluation
We conducted the experiments and demonstrated the results of
our method’s prediction accuracy, sound fidelity, and efficiency
through comparisons. We randomly selected some 3D objects from
the test set and used modal synthesis and Deep-Modal to synthesize
sound. The input voxelization model for these two methods is the
same. The output sound of both methods is compacted to 100HZ-
10000HZ which is consistent with our dataset. There is no other
contact with the object except the excitation force. All the methods
to be compared adopt the same configurations.

5.2.1 Prediction Accuracy. To our knowledge, our work is the first
modal synthesis approach based on learning. We set a baseline,
called the shape-matching method, as the spatial feature-related
impact sound for comparison. We generated these sounds based
on a 3D CNN model pre-trained on ModalNet40. We computed the
second-to-last layer feature from the pre-trained model for the test
object, then searched the training set for the best-matched object.
We then produced the best-matched object’s ground-truth sound
from a random contact position. The 3D CNN pre-trained network
model we selected is 3D Resnet [8]. The pre-trained model achieves
85% average accuracy for 3D object identification on ModelNet40.

We measure both our approach and the baseline on our test set.
For each object from the test set, we randomly select a contact
position and predict the mask and amplitudes. We then evaluate
the prediction by comparing it with the ground truth. Our metric of
comparison includes recall and precision of mask and mean squared
error (MSE) of amplitudes. The mean results are shown in Table 1.

As can be seen from the table, our method is superior to the baseline
on all the metrics.

Table 1: System evaluation using MSE of amplitudes, recall
and precision of mask prediction. Our method shows good
performance on all these metrics.

Algorithm MSE Recall Precision
Ours 0.0054 67.8% 71.8%
shape matching 0.0154 60.8% 63.4%

5.2.2 Sound Fidelity and User Evaluation. To examineDeep-Modal’s
ability to handle arbitrary objects with different materials, we
demonstrate the results of impact sounds for various 3D objects
from our test set with different materials (including common ob-
jects in the real world such as a ceramic bowl, a glass bottle, a
steel cup, a wood door, and a plastic Xbox) between Deep-Modal
and the ground truth (Modal Synthesis). The hit point on a surface
is randomly selected with an impact force perpendicular to the
surface. As shown in Figure 5, Deep-Modal can synthesize sounds
for different materials and scales. These results are close to ground
truth using the visualization of the sound spectrogram.

Considering that the user’s perception is important in evaluating
the quality of sound, especially for an interactive media-content
application or virtual/augmented reality, we also conducted a user
study through a Turing test similar to [19]. In total, 163 participants
(each with normal hearing and wearing earphones) were enrolled
in this test. We showed them two videos of a series of impact
events – one playing the ground truth from modal synthesis, the
other playing a synthesized sound from our Deep-Modal, as shown
in Figure 5 and the supplementary material. They were asked to
distinguish which one is the ground truth, i.e. a two-alternative
forced-choice (2AFC). Our null hypothesis is that the two audio
clips cannot be distinguished and are equally likely to be chosen.
We employed a two-sided binomial test for our hypothesis.

We collected all the responses and found that the ground truth is
preferred by 51.53% of the total responses and there is no significant
evidence to indicate the difference between our model and the
ground truth ( 𝑝 = 0.75). This validates the fidelity of our method for
various sound synthesis applications, meaning that the participants
are barely able to distinguish the truth. Furthermore, we provided
a 7-point Likert scale (1 for totally different and 7 for totally same)
to measure their similarity. The results show that the mean score is
5.11 with relatively high similarity.

To examine the Deep-Modal’s ability to handle objects with dif-
ferent geometric shapes, we also demonstrate the results of impact
sounds of various 3D objects with a ceramicmaterial for our method
and the ground truth, as shown in Figure 6. Accordingly, the 2𝑛𝑑
Turing test is performed on the same participants as the 1𝑠𝑡 test.
We found that the ground truth is preferred by 63.19% of the total
responses. There is significant evidence to indicate there is a differ-
ence between our model and the ground truth ( 𝑝 < 0.01), which
means some participants can distinguish our result from the ground
truth. This is because our network cannot capture harmonic series
well as, shown in Figure 6, and our audio sounds less clear than the
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Figure 5: Sound synthesis of various 3D objects with different materials and sizes using spectrogram visualization.
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Figure 6: Sound synthesis of various 3D objects with the same ceramic material using spectrogram visualization.

ground truth. This disadvantage is obvious when the material is
ceramic. Furthermore, the results from a 7-point Likert scale used
to measure the similarity show that the mean score is 5.45. This
validates the fidelity of our method to some extent.

To examine Deep-Modal’s ability to handle different positions or
different impacts of an object, we demonstrate the results of impact
sound of a ceramic bowl, as shown in Figure 7. Deep-Modal can
synthesize the results that are close to the ground truth. Accordingly,
we performed the 3𝑟𝑑 Turing test using the same participants as the
1𝑠𝑡 test. We found that the ground truth is preferred by 46.01% of
the total responses, and there is no significant evidence to indicate
the difference between our method and the ground truth ( 𝑝 = 0.35).
Furthermore, the results from a 7-point Likert scale show that the
mean score is 5.54. This validates the fidelity of our method.

Overall, we highlight the high fidelity of our method when com-
pared to the ground truth for various aspects.

5.2.3 Efficiency. Deep-Modal can predict mode data for any shape
in real-time. We show the comparison on time cost using four mod-
els with different geometric complexities from the test set in Table 2.
All the methods must perform voxelization and this process can be
completed in real-time on a GPU [13] (less than 3ms). Time cost of
both modal synthesis and our method are counted from the end of
voxelization to the moment when the frequency and amplitude of
modes are obtained. As seen from this table, Deep-Modal has very
high efficiency for all the objects due to the universality of the net-
work trained. Along with the increment of geometric complexity,
the time cost of modal analysis increases drastically. In contrast,
Deep-Modal only takes around 0.01s on a GPU (GeForce GTX 1080
Ti). Modal synthesis is run on a CPU (Intel i7-8700) because the
sparse generalized eigenvalue algorithm is generally hard to accel-
erate using GPU. A recent work reported only 6.4× speedup can be
obtained using two high-end GPUs (NVIDIA Tesla P100s) [5], which
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Figure 7: Sound synthesis of a ceramic bowl at various excited positions. We use spectrogram to visualize the similarity of our
method with the ground truth (Modal Sound). (f) represents the same contact position as (e) with larger force.

shows that GPU acceleration is less significant and not applicable
to modal analysis.

Table 2: Time cost of modal synthesis vs. Deep-Modal on dif-
ferent objects. We highlight the high performance of our
method for objects with different geometric complexities.

Object Voxel Num Modal Synthesis Ours
bowl 2366 2.0s

∼0.01scup 5965 13.2s
dresser 7448 43.5s
glass box 13985 119.8s

Figure 8: Sound synthesis for dynamically generated objects
(a fractured scene) using our method.

5.2.4 Dynamic Object. We perform an extra experiment to synthe-
size the sound of newly generated objects after breaking or fractur-
ing happens. We highlight the performance on complex scenarios

with broken or fractured objects as shown in Figure 8, where new
shapes are generated on the fly. Prior modal synthesis algorithms
cannot handle such benchmarks for real-time sound synthesis. On
the other hand, our approach can synthesize the audio effects in
real-time. However, as fragment-like shapes have not been included
in the training set, the accuracy of prediction should be improved
with larger data sets for learning.

6 CONCLUSION AND FUTUREWORK
We propose Deep-Modal, which can perform approximate modal
analysis in real-time. We designed our neural network to convert
the shape features of the objects into audio features. We showed
the higher fidelity and efficiency of our method when compared to
the modal synthesis method in terms of spectrum and audio.

Our method still has limitations. Our input models must first
be converted to hexahedral cells, which are not as accurate as
tetrahedral cells. We treat the modes in the same sub-band as one
mode and make the contact positions in the same voxel the same by
approximation; this process may result in some loss of accuracy. In
addition, the performance of our network also needs to be improved.
Our work has two future directions. One direction is to improve
the performance of Deep-Modal by increasing the quality and size
of the dataset and optimizing the network. Another direction is
to modify the sound representation and present a new network
that can take acoustic transfer into account [1, 11, 16]. Finally,
we also want to perform quantitative analysis of spectrograms’
similarity using relevant distance (e.g. earth-mover’s distance) and
accumulated error over time for our future work, and a reasonable
metric based on this measure for evaluating the quality of sound
should be given.
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