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Figure 1: We introduce DiffSound, a differentiable sound rendering framework for physics-based modal sound synthesis. It can

infer a variety of physical and shape attributes, such as material, volumetric thickness, geometric shape, and impact positions

of the object, from both simulated datasets and real sound recordings, enabling a series of inverse rendering applications.

ABSTRACT

Accurately estimating and simulating the physical properties of
objects from real-world sound recordings is of great practical im-
portance in the fields of vision, graphics, and robotics. However,
the progress in these directions has been limited—prior differen-
tiable rigid or soft body simulation techniques cannot be directly
applied to modal sound synthesis due to the high sampling rate of
audio, while previous audio synthesizers often do not fully model
the accurate physical properties of the sounding objects. We pro-
pose DiffSound, a differentiable sound rendering framework for
physics-based modal sound synthesis, which is based on an implicit
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shape representation, a new high-order finite element analysis
module, and a differentiable audio synthesizer. Our framework can
solve a wide range of inverse problems thanks to the differentiabil-
ity of the entire pipeline, including physical parameter estimation,
geometric shape reasoning, and impact position prediction. Ex-
perimental results demonstrate the effectiveness of our approach,
highlighting its ability to accurately reproduce the target sound in
a physics-based manner. DiffSound serves as a valuable tool for
various sound synthesis and analysis applications.
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1 INTRODUCTION

The concept of differentiable simulation has become increasingly
popular in the graphics and machine learning communities in re-
cent years [de Avila Belbute-Peres et al. 2018; Degrave et al. 2019;
Popović et al. 2003; Qiao et al. 2020; Toussaint et al. 2019; Xu et al.
2021]. A differentiable simulation framework has the benefit of
allowing for gradient-based optimization and thus can be easily
integrated into a neural network for end-to-end learning.

Our work focuses on differentiable sound rendering, which ad-
dresses a unique challenge compared to standard differentiable
rigid or soft body simulations [Degrave et al. 2019; Du et al. 2021;
Geilinger et al. 2020; Hu et al. 2020; Qiao et al. 2020; Xu et al. 2021]
due to the high sampling rate of sound. While previous audio syn-
thesizers [Clarke et al. 2021; Engel et al. 2020] can optimize for many
audio and physical-based properties, they are unable to explicitly
model more fundamental physical properties such as Young’s mod-
ulus, Poisson’s ratio, size, or shape of the object, and the impact
position, which are all critical for realistic modal sound synthesis.

Inferring these objects’ properties from real sound recordings can
potentially enable various Real-to-Sim applications. For example,
we can accurately infer material parameters from real-world record-
ings and use them to re-create realistic virtual objects, such as those
in Clarke et al. [2023]; Gao et al. [2021, 2023, 2022]. We can also
leverage a differentiable sound rendering framework to design the
shape and material of virtual objects to produce the desired sound,
and then transfer the results back to real objects using 3D printing
technology [Bharaj et al. 2015]. The information about an object’s
shape, material, and impact position can also complement visual
perception, particularly in cases of low visual resolution or poor
lighting, especially for multisensory robotic applications [Clarke
et al. 2021; Li et al. 2022b].

Towards this end, we introduce DiffSound, a differentiable
simulation framework for modal sound synthesis that employs a
high-order finite element method for physics-based modeling. It
not only is fully-differentiable and allows for efficient end-to-end
optimization, but also establishes a seamless connection between
the recorded audio and the fundamental physical properties of real-
world objects. Our DiffSound consists of three main components.
First, we propose a hybrid shape representation that combines
implicit neural representation and explicit 3D tetrahedral mesh
representation. Second, we introduce a high-order finite element
analysis module that allows for incorporating different material
and shape parameters. Finally, we design a differentiable audio syn-
thesizer with a hybrid loss strategy to enable smooth optimization
of the entire differentiable simulation pipeline.

We demonstrate the effectiveness of our method through a wide
range of inverse rendering tasks. Our differentiable framework can
accurately estimate the attributes of the sounding objects, such
as the material parameters, identify the impact positions and am-
plitudes of the physical interactions, and infer the object shape
characteristics, including volumetric thickness, and geometric form,
on both synthetic and real-world audio datasets. Notably, while
limited prior work has proposed to infer material properties from
sound [Ren et al. 2013], to our best knowledge, our work marks the
first attempt to estimate an object’s thickness, precise geometric
shape and impact position purely through sound analysis.

2 RELATEDWORK

Modal Sound Synthesis. Modal sound synthesis is a technique
that has been used to synthesize sounds of rigid bodies [O’Brien
et al. 2002; Raghuvanshi and Lin 2006; van den Doel et al. 2001].
These methods compute the vibration modes of a 3D object through
a generalized eigenvalue decomposition. Based on the basic modal
sound method, many complex sound phenomena can be simulated,
such as knocking, sliding, and friction sound [van den Doel et al.
2001], acceleration noise [Chadwick et al. 2012], complex damping
sound [Sterling et al. 2019], and high-quality contact sound [Zheng
and James 2011].

Related to prior studies on estimating material parameters from
pre-recorded audio [Ren et al. 2013; Zhang et al. 2017], our work
differs by providing an end-to-end optimization-based solution,
enhancing accuracy. Unlike previous methods optimizing object
shape for desired sound [Bharaj et al. 2015], our approach optimizes
all sound modes, not just the fundamental frequency. Additionally,
it offers greater flexibility in shape optimization, surpassing simple
scaling and stretching.

High-Order FEM. In engineering, higher-order methods are often
preferred over lower-order methods due to their superior accuracy
and convergence properties. In computer graphics, finite element
methods (FEM) with linear shape functions are prevalent due to
their simplicity and computational efficiency. While limited prior
work demonstrates that higher-order methods have the potential to
produce better simulation results [Bargteil and Cohen 2014; Longva
et al. 2020; Mezger et al. 2008; Schneider et al. 2019], they are not
commonly used in the field.

To the best of our knowledge, the sole previous attempt [Bharaj
et al. 2015] that incorporates high-order FEM in modal sound syn-
thesis directly employs the engineering software COMSOL [COM-
SOL AB, Stockholm, Sweden 2005] to obtain the results. In contrast,
within our differentiable framework, we newly implement a high-
order FEM module to guarantee both high-quality sound rendering
and differentiability.

Differentiable Simulation. Differentiable simulation has recently
gained much popularity in the graphics and machine learning com-
munities. Several advances have been made in this field with dif-
ferentiable simulators designed for rigid-body dynamics [Cleac’h
et al. 2023; de Avila Belbute-Peres et al. 2018; Degrave et al. 2019;
Popović et al. 2003; Qiao et al. 2020; Toussaint et al. 2019; Xu et al.
2021], soft-body dynamics [Du et al. 2021; Geilinger et al. 2020;
Hahn et al. 2019; Hu et al. 2020, 2019], fluid dynamics [Holl et al.
2020; McNamara et al. 2004; Schenck and Fox 2018; Treuille et al.
2003; Wojtan et al. 2006], and cloth [Li et al. 2022a; Liang et al. 2019;
Murthy et al. 2021].

There are also differentiable rendering methods proposed for sig-
nal processing [Engel et al. 2020] andmodeling impact sound [Clarke
et al. 2021]. These methods can capture various physics-based prop-
erties, such as modal response and force profiles. However, they do
not explicitly consider the fundamental physical properties of ob-
jects, such as shape, material, and impact position. Another promis-
ing approach uses neural networks to approximate the modal anal-
ysis process [Jin et al. 2020, 2022]. Although neural networks are
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inherently differentiable, ensuring physical accuracy can be chal-
lenging, and accurate modal analysis cannot be trivially achieved
just through neural network optimization.

3 DIFFERENTIABLE MODAL SOUND

RENDERING

First, we give an overview of our full model (Sec. 3.1). Then, we de-
scribe the differentiable tetrahedral mesh representation (Sec. 3.2),
differentiable high-order finite element method (FEM) for modal
analysis (Sec. 3.3), and hybrid loss strategy for optimizing all learn-
able modules (Sec. 3.4).

3.1 Method Overview

Differentiable methods in machine learning, like our sound synthe-
sis method DiffSound, allow for computing output gradients from
model parameters. This facilitates parameter optimization using
gradient-based algorithms, with our method ensuring a differen-
tiable pipeline from 3D mesh input to modal sound output.

Specifically, assuming 𝜃 represents the learnable parameters in
our framework. For an input mesh𝑚, we introduce a differentiable
explicit tetrahedral mesh generator 𝐺𝜃𝐺 , which transforms the
input mesh into an explicit tetrahedral mesh𝑚𝑡𝑒𝑡 = 𝐺𝜃𝐺 (𝑚). The
generated tetrahedral mesh is constrained by generator parameters
𝜃𝐺 , such as geometric shapes and thickness.

Next, we introduce a differentiable high-order FEM module, in-
cluding a differentiable FEM matrix assembler 𝐴𝜃𝐴 and a differen-
tiable generalized eigenvalue decomposer 𝐷 . The matrix assem-
bler takes an explicit tetrahedral mesh as input, and outputs its
mass matrix and stiffness matrix M,K = 𝐴𝜃𝐴 (𝑚𝑡𝑒𝑡 ) constrained
by parameters 𝜃𝐴 , including Young’s modulus and Poisson’s ratio.
The generalized eigenvalue decomposer 𝐷 takes M,K as input and
outputs its eigenvalues corresponding to KU = MUΛ, denoted as
𝜆 = 𝑑𝑖𝑎𝑔(Λ) = 𝐷 (M,K).

Building upon this, we introduce a differentiable additive syn-
thesizer 𝑆𝜃𝑆 , which takes eigenvalues 𝜆 as input and synthesizes
its modal sound 𝑎𝑠𝑦𝑛 = 𝑆𝜃𝑆 (𝜆) with the constraint of 𝜃𝑆 , such as
damping coefficients and mode amplitudes. Finally, we introduce a
hybrid loss function 𝐿 that compares the synthesized audio 𝑎𝑠𝑦𝑛
generated from the aforementioned process with the ground-truth
audio 𝑎𝑔𝑡 , resulting 𝑙𝑜𝑠𝑠 = 𝐿(𝑎𝑠𝑦𝑛, 𝑎𝑔𝑡 ). For simplicity, we consoli-
date the process of differentiable sound synthesis by the mesh𝑚
into a function 𝐹 : 𝑎𝑠𝑦𝑛 = 𝐹𝜃 (𝑚) = 𝑆𝜃𝑆 (𝐷 (𝐴𝜃𝐴 (𝐺𝜃𝐺 (𝑚)))). At this
point, the optimization target is as follows:

𝜃∗ = argmin𝜃 (𝐿(𝐹𝜃 (𝑚), 𝑎𝑔𝑡 )) . (1)

In certain tasks, it is often required to optimize the parameters
of just one module while the parameters of other modules remain
fixed. The schematic representation of our approach’s methodology
is depicted in Figure 2.

3.2 Differentiable Tetrahedral Representation

Wepropose a differentiable tetrahedral mesh representation tailored
for our differentiable sound rendering, building upon the foundation
of Deep Marching Tetrahedra (DMTet) [Munkberg et al. 2022; Shen
et al. 2021]. Our approach involves the representation of a shape

through a Signed Distance Field (SDF) implicitly encoded by a
Multilayer Perceptron (MLP) (Sec. 3.2.1), which is then transformed
into an explicit tetrahedral mesh using a deformable tetrahedral
grid (Sec. 3.2.2).

3.2.1 Implicit Neural Representation. Given the inherent challenge
of precisely associating the sound of an object with its exact shape,
there can be significant ambiguity in the resulting geometry when
optimizing purely from sound. To address this, we utilize a Multi-
layer Perceptron (MLP) to parameterize the SDF values. This im-
plicit parameterization effectively serves to regulate both the SDF
and the overall smoothness of the reconstructed shape. Addition-
ally, the degree of smoothness can be fine-tuned by varying the
frequency of the positional encoding, following Neural Radiance
Fields [Mildenhall et al. 2020], applied to the inputs of the MLP.

3.2.2 Implicit to Explicit Representation. We adopt the Marching
Tetrahedra (MT) algorithm [Doi and Koide 1991] to transform en-
coded Signed Distance Function (SDF) data into explicit tetrahedral
meshes. Our approach allows background tetrahedral cell vertices
to deform within half-cell size limits, enhancing geometric expres-
sion. Using SDF values from the MLP for vertices in a tetrahedron,
MT discerns surface topology based on SDF sign variations. Our
method focuses on identifying internal tetrahedra rather than sur-
face topology, resulting in five configurations due to rotational
symmetry (see Figure 3). Surface vertex locations are determined
by linear interpolation along tetrahedron edges, akin to DMTet’s
approach [Munkberg et al. 2022; Shen et al. 2021]. For complex in-
ternal sub-regions, we further subdivide into smaller tetrahedrons.
To minimize high-frequency noise impact in sound optimization,
we extract the largest connected tetrahedral mesh, discarding small
fragments. Despite the potential sudden appearance or disappear-
ance of fragments, their existence is consistently determined during
the computation of the gradient in each step. Consequently, our
approach ensures the accurate calculation of the gradient.

3.3 Differentiable High-order FEM

Prior studies [Bharaj et al. 2015; Hughes 2012] have noted the limi-
tations of linear tetrahedral finite elements in producing accurate
solutions, even with refined simulation discretization. In this work,
we propose the use of differentiable high-order FEM for greater
accuracy and generality.

We compute the mass and stiffness matrices for the tetrahedral
mesh (introduced in Sec. 3.2 above), which are made differentiable
with respect to the material coefficients, namely Young’s modulus,
density, and Poisson’s ratio as introduced in Sec. 3.3.1. Subsequently,
in Sec. 3.3.2, we compute the gradient from the eigenvalues obtained
through eigendecomposition with respect to these twomatrices. For
a comprehensive derivation of thesematrices, please refer to [Sifakis
and Barbic 2012; Zhu 2018].

3.3.1 Mass and Stiffness Matrix. To obtain the mass matrix, we
initially compute the element matrix for each individual tetrahedral
element, followed by the assembly process to construct the mass
matrix for the entire tetrahedral mesh. Let 𝑉 denote the volume
occupied by a tetrahedral element, 𝜌 represents its density, and the
shape function value at position 𝑥 with respect to node 𝑖 is denoted
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Figure 2: Our DiffSound differentiable simulation and inverse rendering pipeline. The differentiable tetrahedral mesh

representation is employed to directly optimize the topology of a tetrahedral mesh. Subsequently, a differentiable high-order

finite element analysis module is utilized to analyze the vibration frequencies of the tetrahedral mesh. Finally, a differentiable

additive synthesizer is used to produce the impact sound with a hybrid loss function for optimizing all learnable modules. The

learnable parameters, indicated by blue boxes, control module outputs in our differentiable framework. This enables gradient

computation for hybrid loss, facilitating parameter optimization.
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Figure 3: Five configurations of the interface between back-

ground tetrahedrons and internal ones. If the internal subre-

gion is more complex than a tetrahedron, it should be subdi-

vided into smaller tetrahedrons.

as 𝑁𝑖 (𝑥). The element mass matrix M𝑒 is defined as follows:

M𝑖 𝑗
𝑒 = 𝜌

∭
𝑥∈𝑉

𝑁𝑖 (𝑥)𝑁 𝑗 (𝑥)𝑑𝑥 . (2)

To compute this volume integral, we employ the Gaussian numer-
ical integration method, selecting 𝑡 Gaussian integration points
𝑔𝑘 within the tetrahedral element, with corresponding Gaussian
integration weights𝑤𝑘 . The unit mass matrix can be calculated as:

M𝑖 𝑗
𝑒 = 𝜌𝑉

𝑡∑︁
𝑘=1

𝑁𝑖 (𝑔𝑘 )𝑁 𝑗 (𝑔𝑘 )𝑤𝑘 . (3)

For a high-order tetrahedral element containing 𝑛 nodes, the algo-
rithm described above yields a unit mass matrix M𝑒 of size 3𝑛 × 3𝑛.
Now, for the entire tetrahedral mesh with a total of𝑚 nodes, it is
only necessary to add each element M𝑖 𝑗

𝑒 computed for each tetrahe-
dron to the corresponding entries M𝑖 𝑗 of the overall mesh’s mass
matrix M. This assembles a 3𝑚 × 3𝑚 mass matrix M.

Following the defined process for the mass matrix, let 𝐸 denote
Young’s modulus and 𝜈 denote Poisson’s ratio. The element stiffness
matrix K𝑒 of size 3𝑛 × 3𝑛 for a tetrahedral element is defined as:

K𝑒 =

𝑡∑︁
𝑘=0

𝑤𝑘𝑉D(𝑔𝑘 )𝑇 B(𝐸, 𝜈)D(𝑔𝑘 ) . (4)

Here, B(𝐸, 𝜈) is the elasticity matrix representing the material
model, and we adopt the linear elastic model [Sifakis and Bar-
bic 2012]. D(𝑔𝑘 ) is a matrix derived from the shape functions at
point 𝑔𝑘 . To construct the overall stiffness matrix K for the en-
tire tetrahedral mesh, we add each element in K𝑒 computed for
each tetrahedron to the corresponding entries of the overall mesh’s
stiffness matrix K. This assembles a 3𝑚 × 3𝑚 stiffness matrix K.

We employ PyTorch [Paszke et al. 2017] to efficiently batch
calculate both the element mass matrix and element stiffness matrix.
Subsequently, these element matrices are assembled into global
Coordinate Format (COO) sparse matrices for further processing.
Notably, it is essential to highlight that these computations are
automatically differentiable, enabled by PyTorch. Additionally, both
the mass and stiffness matrices exhibit differentiability with respect
to the material properties (𝜌 in the mass matrix and B(𝐸, 𝜈) in
the stiffness matrix), as well as the geometry derived from our
differentiable tetrahedral mesh (𝑁𝑖 (𝑥) in the mass matrix andD(𝑔𝑘 )
in the stiffness matrix, as well as 𝑉 in both cases).

3.3.2 Eigenvalue Decomposition. Now, we perform a generalized
eigenvalue decomposition on the mass and stiffness matrices as
KU = MU𝚲, where U is a stack of 𝑘 eigenvectors, and 𝚲 is the
diagonal matrix of 𝑘 eigenvalues. The 𝑖-th eigenvector, denoted as
u𝑖 , represents the surface vibration distribution of the 𝑖-th mode,
while the 𝑖-th eigenvalue, 𝜆𝑖 , determines its frequency and satisfies
Ku𝑖 = 𝜆𝑖Mu𝑖 . Since there is currently no eigenvalue decomposer
that supports automatic differentiation, we thus derive the gradient
relationship between eigenvalues and the mass and stiffness matri-
ces as follows. Taking the derivative of both sides with respect to
𝜆𝑖 in the equation Ku𝑖 = 𝜆𝑖Mu𝑖 , we obtain:

𝜕Ku𝑖 + K𝜕u𝑖 = 𝜆𝑖M𝜕u𝑖 + 𝜆𝑖 𝜕Mu𝑖 + 𝜕𝜆𝑖Mu𝑖 , (5)

By pre-multiplying both sides by u𝑇
𝑖
and rearranging the terms, we

obtain:

u𝑇𝑖 (𝜕K − 𝜆𝑖 𝜕M)u𝑖 + u𝑇𝑖 (K − 𝜆𝑖M)𝜕u𝑖 = u𝑇𝑖 𝜕𝜆𝑖Mu𝑖 . (6)
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From the definition of the generalized eigenvalue, we know that
u𝑇
𝑖

Mu𝑖 = 1 and (K−𝜆𝑖M)u𝑖 = 0. Zero coefficient (u𝑇
𝑖
(K−𝜆𝑖M) = 0)

automatically nullifies the gradient of the eigenvector. As a result,
we can rearrange the equation and obtain:

𝜕𝜆𝑖 = u𝑇𝑖 (𝜕K − 𝜆𝑖 𝜕M) u𝑖 . (7)

Now, we establish a connection between the gradient of vibration
frequencies and the gradient of the mass and stiffness matrices.

3.4 Loss Function for Optimization

At this stage, we can optimize the material properties and geom-
etry of the object using target eigenvalues. This optimization is
performed by employing the loss function defined as:

𝐿𝑖 = | |𝜆𝑝𝑟𝑒𝑑
𝑖

− 𝜆
𝑔𝑡

𝑖
| |1 , (8)

where 𝜆𝑔𝑡
𝑖

is the ground truth eigenvalue of mode 𝑖 and 𝜆𝑝𝑟𝑒𝑑
𝑖

de-
notes the predicted eigenvalue. Note that the absence of a loss func-
tion regarding eigenvectors does not imply that the eigenvectors
will not change. In fact, during the optimization process, gradients
are transferred to the matrices K and M. As these matrices undergo
updates through gradient descent, the eigenvectors associated with
them naturally evolve as well. This indicates a dynamic change
in the eigenvectors even in the absence of direct modifications
through the loss function.

For generality, we proceed to compute the predicted sound sig-
nal from the predicted eigenvalues as detailed in Sec. 3.4.1. Subse-
quently, we utilize a hybrid loss function to calculate the loss of the
sound signal as detailed in Sec. 3.4.2.

3.4.1 Differentiable Additive Synthesizer. The sound produced by a
rigid-body object can be effectively modeled as a bank of damping
sinusoidal oscillators. For the 𝑖-thmode, denoting its damping factor
as 𝑑𝑖 and its amplitude as 𝐴𝑖 , its frequency can be obtained by:

𝑓𝑖 =

√︃
𝜆𝑖 − 𝑑2

𝑖

2𝜋
. (9)

Let ℎ be the time step size, the sound signal 𝑠𝑖 (𝑛) over discrete time
steps, 𝑛, can be computed as:

𝑠𝑖 (𝑛) = 𝐴𝑖𝑒
−𝑑𝑖𝑛ℎ sin(2𝜋 𝑓𝑖𝑛ℎ) . (10)

Finally, the sound is produced by summing the sound signals for all
modes. It is important to note that amplitudes and damping factors
are designed to be learned from ground truth data, and amplitudes
can implicitly include the acoustic transfer function [James 2016].
Additionally, the eigenvalues 𝜆𝑖 play a crucial role in connecting
the sound signal to the physical properties of the object. The com-
putations defined in Equations 9 and 10 are evaluated in parallel
along both the time and mode dimensions using PyTorch, enabling
automatic differentiation.

When dealing with naturally recorded sounds that contain noise,
we enhance the output of the additive synthesizer by combining
it with noise filtered by an LTV-FIR filter [Engel et al. 2020]. The
parameters of this filter are also learnable, enabling it to adapt to
real-world noise characteristics.

3.4.2 Hybrid Loss Function. As suggested in previous differential
audio synthesizers [Clarke et al. 2021; Engel et al. 2020], a multi-
scale spectral loss is effective for measuring the difference between
two audio signals. Given the ground truth and the predicted sound
signals, we compute their spectrograms 𝑆𝑖 and 𝑆𝑖 , respectively,
using a specified FFT size 𝑖 . The loss is then defined as the sum of
the L1 difference between 𝑆𝑖 and 𝑆𝑖 , as well as the L1 difference
between their respective log spectrograms:

𝐿𝑖 = | |𝑆𝑖 − 𝑆𝑖 | |1 + || log 𝑆𝑖 − log 𝑆𝑖 | |1 . (11)

The total reconstruction loss is the sum of all the spectral losses with
different FFT sizes, which provide varying frequency and temporal
resolutions.

Traditional L1 or L2 loss can result in difficult convergence when
the initial and ground truth object locations or frequencies signifi-
cantly differ [Xing et al. 2022]. This issue also arises in differentiable
sound rendering. For instance, if the initial frequency far deviates
from the ground truth frequency, there may be no overlapping
pixels in the spectrogram between the initial mode and the tar-
get mode, causing the L1 or L2 loss to yield zero gradients and
potentially leading to undesired local minima.

To address this issue, we first treat the spectrogram value in each
frequency bin as a high-dimensional point. To measure the distance
between the ground truth and the predicted spectrograms, we uti-
lize the optimal transport (Wasserstein) distance. This distance
metric considers the cost of moving mass from one distribution
to another. In our context, we define the unit moving cost from
one frequency bin to another as their corresponding point distance.
For efficiency, we employ an efficient algorithm for approximating
optimal transport distances using Sinkhorn divergences [Feydy
et al. 2019].

As the optimal transport-based loss tends to be less effective
when the initial and target spectrograms are already well-aligned,
we thus propose to use a hybrid strategy: We train the model using
the transport-based loss function until a plateau in loss reduction is
observed, indicating no significant further decrease. At this point,
we transition to employing the spectral loss function. This staged
approach ensures that the model optimally benefits from each type
of loss during different phases of the training process.

4 INVERSE RENDERING TASKS AND

EXPERIMENTS

We define three types of inference tasks and conduct corresponding
experiments to showcase the capability of our differentiable ren-
dering framework. First, we perform an ablation study on the loss
function to validate our approach (Sec. 4.1). Next, we reason about
the material attributes (Sec. 4.2), geometric shape (Sec. 4.3), and im-
pact position (Sec. 4.4) of the object in a contact event. Please refer
to the supplementary video for the demo results of our experiments.

The real-world object data used in the experiments is sourced
from the ObjectFolder Real dataset [Gao et al. 2023], which con-
tains multisensory data collected from 100 real-world household
objects. The data for each object includes its high-quality 3D mesh,
impact sound recordings, and the accompanying video footage
for each impact. Our DiffSound is implemented in PyTorch and
utilizes the Adam optimizer for optimization.



SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Xutong Jin, Chenxi Xu, Ruohan Gao, Jiajun Wu, Guoping Wang, and Sheng Li

4.1 Ablation Study on Loss Functions

Wefirst conduct an ablation study to validate the effectiveness of the
hybrid loss function compared to either using a single multi-scale
L1 loss or a single optimal transport-based loss.

We set up a simple case where the predicted eigenvalues can
only be changed proportionally through a trainable scaling factor.
We aim to optimize this scaling factor from an initial value of 1.0 to
a predefined target value. We select four meshes from the dataset
and manually set the material parameters, following the guidelines
presented in [James 2016].

As depicted in Figure 4, the results indicate that the optimal
transport-based loss shows high effectiveness for optimizing from
a bad initial state where the multi-scale L1 loss cannot work. Ad-
ditionally, our hybrid loss function achieves the best performance
compared to either single loss function in all experiments.

4.2 Material Attribute Inference

In this task, we aim to infer the material parameters from the impact
sound of an object, assuming the object’s geometric model is known.

First, we focus on estimating the damping curve, which is a
crucial part of our differentiable additive synthesizer, denoted as
𝑆𝜃𝑆 (see Figure 6). We define the ground truth audios as 𝑎𝑔𝑡 and use
a hybrid loss function, 𝐿, for optimization. For each frequency in a
set of randomly selected modes, denoted as 𝑓𝑟𝑎𝑛𝑑 , our synthesizer
assigns a unique damping coefficient. It then uses these coefficients
to synthesize the sound for these modes. The optimization of the
damping curve can be formulated as:

𝜃∗𝑆 = argmin𝜃𝑆 (𝐿(𝑆𝜃𝑆 (𝑓𝑟𝑎𝑛𝑑 ), 𝑎𝑔𝑡 )) . (12)

After optimization, we remove modes with small amplitudes and
interpolate the damping coefficients of the remaining modes to
form a continuous damping curve.

Next, we estimate the material parameters of our FEM matrix
assembler,𝐴𝜃𝐴 . These parameters include the ratio of Young’s mod-
ulus to density (denoted as 𝐸) and Poisson’s ratio (denoted as 𝜈). Our
framework 𝐹𝜃 integrates several components: a fixed tetrahedron
mesh generator𝐺 , the FEM matrix assembler 𝐴𝜃𝐴 , an eigenvalue
decomposer 𝐷 , and the previously trained and now fixed additive
synthesizer 𝑆𝜃 ∗

𝑆
. For a given input model𝑚, the optimization of the

material parameters can be expressed as:

𝜃∗𝐴 = argmin𝜃𝐴 (𝐿(𝐹𝜃 (𝑚), 𝑎𝑔𝑡 )) . (13)

We separate the training processes for the damping factor and ma-
terial parameters. This is because the errors in the damping factor
and material parameters can influence each other, making optimiza-
tion challenging. In this two-step process, we sequentially refine
the estimation of the damping and material parameters, leading
to a more accurate and stable optimization. Figure 7 presents a
comparison of the the outcomes from training the damping factor
and material parameters separately versus training them simulta-
neously on a test object. The results demonstrate that our approach
of separate training substantially outperforms the simultaneous
training method, proving to be highly effective.

Contrastingwith prior work [Ren et al. 2013] that used first-order
FEM with a fixed Poisson’s ratio to predict only Young’s modulus,
their model’s eigenvalues are simplified with a linear proportional

Table 1: Material estimation with 16 objects. Baseline 1 [Ren

et al. 2013] uses fixed Poisson’s ratio and first-order FEM;

Baseline 2 applies 2nd-order FEM with fixed Poisson’s ratio;

Baseline 3 employs 1st-order FEM with learnable Poisson’s

ratio. Our method consistently outperforms all baselines in

relative errors.

FEM order Learnable 𝜈 𝐸 Err. 𝜈 Err. Spec. Err.

baseline 1 1 ✗ 0.51 0.68 26.43
baseline 2 2 ✗ 0.10 0.68 11.21
baseline 3 1 ✓ 0.51 0.66 27.00
DiffSound 2 ✓ 0.07 0.26 7.95

relationship with Young’s modulus. In contrast, our method opti-
mizes both Young’s modulus and Poisson’s ratio, addressing the
inaccuracies arising from the oversimplified assumption. We pro-
vide a detailed comparison with various baselines in Table 1.

We leverage ground-truth audio data, synthesized using second-
order FEM for 16 objects with randomly chosen material parame-
ters from a feasible range. Beginning with random initial material
parameters, our framework differentiably synthesizes sound by op-
timizing these parameters to minimize the loss against the ground
truth. Moreover, the effectiveness of our approach is evaluated
using data from two real-world ceramic objects.

We use the relative error as a metric for 𝐸, 𝜈 , and sound spec-
trogram, defined as 𝑙 =

| |𝑔−𝑝 | |2
| |𝑔 | |2 for the ground-truth 𝑔 and the

prediction 𝑝 . We present the quantitative results in Table 1 for syn-
thetic data, along with qualitative examples for real-world data in
Figure 8. Our DiffSound demonstrates substantial improvements
over all baselines across all metrics, showcasing high effectiveness
even in real-world data.

Implementation details. To estimate the damping curve, we ini-
tially train an additive synthesizer using target audios composed
of 256 modes with filtered noise. The training spans over 10,000
steps in few minutes. Modes with damping coefficients less than
100 are deemed invalid, and the coefficients of the remaining valid
modes are linearly interpolated to form a damping curve. Subse-
quently, we train the material parameters based on the damping
curve, spanning 10,000 steps at a learning rate of 0.01, with a transi-
tion in the loss function at the 5,000-step mark. Using a background
tetrahedral mesh grid resolution of 323, the total training duration
for each object is approximately 3 hours.

4.3 Shape Attribute Inference

Determining the shape from sound is challenging because differ-
ent shapes can produce similar sounds upon impact [Kac 1966].
Therefore, we regulate the material coefficients and impose certain
geometry constraints to ensure a reliable optimization process.

4.3.1 Geometric Shape Inference. In this task, our focus is on de-
tailed geometry recovery under certain constraints. Our goal is to
precisely reconstruct the finer details of shapes from a given coarse
voxel grid by utilizing modal sound for inference.

To accomplish this task, we infer the geometric shape from
the eigenvalues of vibration modes, which are directly related to
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frequencies (Equation 9). Additionally, we constrain the tetrahedral
mesh during optimization using a coarse voxel grid. Specifically, we
query the SDF values from the MLP and ensure that the SDF of grid
points inside the mesh is negative, while those outside are positive.
This is enforced using a loss defined as the sum of absolute SDF
values of those points whose SDF sign differs from the expected
sign. The loss for sound constraint is defined as the L1 loss between
the ground truth eigenvalues and the predicted eigenvalues of the
first 𝑘 modes, divided by the norm of the ground truth.

In our framework, the key learnable parameter, denoted as 𝜃 ,
is the implicit SDF representation, 𝑆𝐷𝐹𝜃 , in the tetrahedron mesh
generator 𝐺𝜃𝐺 . This generator processes the coordinates of a point
to output its SDF value for further synthesis. Our framework inte-
grates the tetrahedron mesh generator 𝐺𝜃𝐺 , the fixed FEM matrix
assembler 𝐴, and the eigenvalue decomposer 𝐷 , yielding the func-
tion 𝐹𝜃 . This function takes an initial coarse mesh𝑚 as input and
outputs the first 𝑘 smallest eigenvalues associated with it.

Let 𝜆𝑔𝑡 represent the ground truth eigenvalues and 𝑆𝐷𝐹 denote
the SDF field defined by the initial coarse voxels. The weight of the
coarse voxel grid constraint is given by𝑤 . For all vertices 𝑣 in the
background grid 𝐵, the optimization process can be formulated to
minimize the combination of the eigenvalue loss and the SDF sign
discrepancy loss:

𝜃∗ = argmin𝜃 (𝐿eigen (𝜃 ) +𝑤 · 𝐿SDF (𝜃 )) . (14)

The eigenvalue loss 𝐿eigen (𝜃 ) is defined as:

𝐿eigen (𝜃 ) = ∥𝐹𝜃 (𝑚) − 𝜆𝑔𝑡 ∥1 . (15)

The SDF sign discrepancy loss 𝐿SDF (𝜃 ) is defined over the back-
ground grid 𝐵 to penalize the discrepancy in the signs of the SDF
values between the predicted and initial coarse voxel fields as:

𝐿SDF (𝜃 ) =
∑︁
𝑣∈𝐵

|𝑆𝐷𝐹𝜃 (𝑣) | · |sign(𝑆𝐷𝐹𝜃 (𝑣)) − sign(𝑆𝐷𝐹 (𝑣)) | (16)

In this formulation,𝜃∗ is the optimized parameter set that minimizes
the combined loss.

In our experiments, we generate synthetic data for three objects
from Crane et al. [2013] with a ceramic material parameter. We
conduct separate experiments for each object and constraint mode
number. The geometric shape can be successfully recovered from
impact sound and a coarse voxel constraint (163), as illustrated by
the quantitative results in Figure 9. This capability compensates for
the loss of such details in the initial coarse mesh. When applied to
coarser voxel constraints (83), our approach can still synthesize geo-
metric details that are visually close to the ground truth. The high
quality of shape estimation of our approach can also be validated
in the accompanying video.

Implementation details. First, we obtain the initial MLP repre-
sentation for the SDF by optimizing with only the constraint of
a coarse voxel grid. The SDF constraint involves 323 uniformly
distributed points within a cube that is 1.1 times the size of the
object’s bounding box. This initial training process requires only a
few seconds for 1000 steps. Subsequently, we refine the MLP rep-
resentation by training according to Equation 15 with 𝜔 = 0.001.
Using a background tetrahedral mesh grid resolution of 323, this
process spans 100 steps and takes approximately 2 minutes.

4.3.2 Volumetric Thickness Inference. An interesting question arises:
Is a given object solid or hollow? And if so, how thick is the inside?
In this task, our focus shifts to understanding the internal condi-
tions of an object as a whole. Our goal is to precisely estimate the
volumetric thickness of a given object by utilizing modal sound for
inference.

To complete this task, we generate hollow meshes from each
solid input, varying only in thickness, and then predict their thick-
ness based on their eigenvalues. Mesh "thickness" is defined using
the solid mesh’s Signed Distance Field (SDF): the smallest SDF value,
𝑠min, corresponds to the farthest internal point from the outer sur-
face. An object of thickness 𝑡 includes points within 𝑡 ·−(𝑠min) from
this surface. Thus, a point 𝑃 lies inside an object of thickness 𝑡 if
its SDF value 𝑆𝐷𝐹 (𝑃) satisfies −𝑡 · 𝑠min < 𝑆𝐷𝐹 (𝑃) < 0.

Based on the defined "thickness", we enhanced our tetrahedral
mesh generator𝐺𝜃𝐺 = 𝐺𝑡 with a thickness parameter 𝑡 , enabling it
to synthesize hollow voxel meshes of thickness 𝑡 from a solid mesh.
We chose several target thicknesses 𝑡𝑡𝑎𝑟𝑔𝑒𝑡 for each input mesh
and created corresponding ground truth meshes for each. During
optimization,𝐺𝑡 differentiably generates a hollow voxel mesh from
the initial SDF of the mesh, matching the current thickness 𝑡 . We
then compute the L2 loss between the first 𝑘 eigenvalues of the
current and ground truth meshes, updating 𝑡 based on its gradient.

We consolidate the tetrahedron mesh generator 𝐺𝑡 , the fixed
FEM matrix assembler 𝐴 and the eigenvalue decomposer 𝐷 in our
framework into a function 𝐹𝑡 , which takes an input mesh and
outputs first 𝑘 eigenvalues of its voxel corresponding tetrahedron
mesh with thickness 𝑡 . Assuming ground truth eigenvalues is 𝜆𝑔𝑡 ,
for initial solid mesh𝑚, formulation of this optimization process
can be expressed as:

𝑡∗ = argmin𝑡 ( | |𝐹𝑡 (𝑚) − 𝜆𝑔𝑡 | |2) . (17)

In our experiment, we selected four models with varying mate-
rials. We generated target grids for each model at thicknesses of
0.3, 0.4, 0.5, 0.6, and 0.7, and used their first 𝑘 = 32 eigenvalues as
ground truth. We observed that thicknesses below 0.3 led to holes
in the mesh due to limited resolution, while thicknesses above 0.7
yielded eigenvalues akin to those of solid objects. The results, de-
tailed in Table 2, indicate our method’s proficiency with smooth,
thick meshes, but potential inaccuracies with complex surfaces or
thinner meshes. This can be attributed to a more complex nonlinear
relationship between eigenvalues and thickness in such cases.

Implementation details. Using a background tetrahedral mesh
grid resolution of 643, the training process encompasses 500 steps
at a learning rate of 0.02, taking approximately 2 hours per object
and target thickness.

4.3.3 Shape Morphing Inference. In this task, we focus on two
distinct objects and a series of intermediate morphing shapes be-
tween them. Our objective is to accurately identify the specific
shapes within this progression, utilizing modal sound for inference.
To accomplish this task, we begin by calculating the SDF values
for each vertex in the DMTet background grid of the two initial
meshes. We then interpolate the SDF values from these meshes for
each vertex. Let 𝑣𝑆𝐷𝐹1 and 𝑣𝑆𝐷𝐹2 be the SDF values for a back-
ground grid vertex 𝑣 relative to the two models, and 𝑡 be the
interpolation coefficient. The vertex’s interpolated SDF value is
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Table 2: Volumetric thickness inference using synthetic data

tested with different objects. We measure the prediction er-

ror against the ground-truth coefficient using MAE. Our ap-

proach achieves high prediction accuracy.

object target thickness MAE0.3 0.4 0.5 0.6 0.7

Bunny 0.304 0.407 0.508 0.608 0.709 0.0073
Armadillo 0.338 0.456 0.590 0.696 0.730 0.0623
Bulbasaur 0.308 0.411 0.512 0.614 0.718 0.0125
Squirtle 0.312 0.416 0.520 0.624 0.718 0.0177

𝑣𝑆𝐷𝐹 = 𝑡 · 𝑣𝑆𝐷𝐹1 + (1 − 𝑡) · 𝑣𝑆𝐷𝐹2. As 𝑡 varies from 0 to 1, the
mesh transitions from the first to the second mesh, as depicted in
the Target part in Figure 10. Our objective is to find the mesh that
optimally fits the target sound during this morphing, by optimizing
the interpolation coefficient 𝑡 .

For two initial meshes 𝑚1 and 𝑚2, 𝑆𝐷𝐹 (·) gives its SDF val-
ues in all background grid vertexes 𝑆𝐷𝐹 (𝑚1) and 𝑆𝐷𝐹 (𝑚2). We
consolidate the tetrahedron mesh generator 𝐺𝜃𝐺 = 𝐺𝑡 , the fixed
FEM matrix assembler 𝐴, and the eigenvalue decomposer 𝐷 in our
framework into a function 𝐹𝑡 , which takes background grid SDF
and outputs its corresponding first 𝑘 eigenvalues.

Assuming ground truth first 𝑘 eigenvalues is 𝜆𝑔𝑡 , The formula-
tion of this optimization process can be expressed as:

𝑡∗ = argmin𝑡 ( | |𝐹𝑡 (𝑡 ·𝑆𝐷𝐹 (𝑚1) + (1− 𝑡) ·𝑆𝐷𝐹 (𝑚2)) −𝜆𝑔𝑡 | |2) . (18)
To validate the feasibility of our framework for this task, we

select a series of initial mesh pairs, select a range of target interpo-
lation coefficients, interpolate SDF values from target coefficients,
synthesize morphed tetrahedral voxel meshes from SDF values,
and extract its first 𝑘 eigenvalues as ground truth. During the opti-
mization process, we start from randomly initialized interpolation
coefficients 𝑡 , synthesize the interpolated meshes from current inter-
polation coefficients, calculate the L2 loss between their eigenvalues
and the ground truth, and backpropagate gradients to update the
interpolation coefficients 𝑡 .

In our experiment, we used Squirtle and Bulbasaur, and Bunny
and Spot, as two pairs of initial meshes for morphing. We inter-
polated models using SDF coefficients of 0.0, 0.2, 0.4, 0.6, 0.8, and
1.0, and extracted their first 𝑘 = 32 eigenvalues as shape morphing
targets. To keep the interpolation coefficient 𝑡 between 0 and 1, 𝑡
was represented as a weighted sum of 16 evenly spaced numbers
from 0 to 1. These weights, treated as learnable parameters, were
normalized to be positive and sum to 1. Figure 10 visualizes the
results, showing our framework’s efficiency in finding shapes that
align closely with the target eigenvalues during transformation.
The implementation details are exactly the same as those for the
experiments on thickness inference except for the learning rate,
which is set to be 0.05.

4.4 Impact Event Inference

Impact position and amplitude are not explicitly optimized as a
learnable parameter. However, the learnable mode amplitude 𝐴

in Equation 10 implicitly encodes information about the impact

position and amplitude. In other words, the mode amplitude can
be utilized to predict the object’s impact position and amplitude,
a conclusion that has also been reached in Van den Doel and Pai
[1998].

In this task, we aim to infer the impact position from the recorded
sound, given that the object’s mesh is known. First, we optimize the
material parameters from sound following the process outlined in
Sec. 4.2. Simultaneously, we optimize the amplitudes of all modes,
denoted as A = [𝐴0, 𝐴1, ..., 𝐴𝑛]. Then, using the estimated material
parameters, we apply forward modal sound simulation, which in-
cludes acoustic transfer [James et al. 2006], to obtain the simulated
amplitudes of all modes Â𝑖 when impacting each mesh vertex 𝑣𝑖 .
We measure the likelihood that the impact position corresponding
to the recorded sound is near vertex 𝑣𝑖 by evaluating the similarity
between A and Â𝑖 . We choose recorded real data of a ceramic bowl
from the ObjectFolder Real dataset [Gao et al. 2022] and use
cosine similarity to compute the surface likelihood distribution, as
visualized in Figure 5. In this example, the bowl exhibits rotational
symmetry around its central axis. Theoretically, striking any points
on the bowl that are rotationally symmetric about this axis (forming
a circle centered on the axis) would produce identical sounds with
symmetric impulse responses. The impact positions predicted by
the mode amplitudes are deemed reasonable and accurate if they fall
within the same circle as the groundtruth (i.e., they are rotationally
symmetric about the central axis). For ease of visual comparison,
we rotate the probability heatmap of the predicted impact positions
to align them with the groundtruth. And our method predicts a
high likelihood around the ground truth impact position.

5 CONCLUSION

We presented a differentiable modal sound rendering framework
that enables inverse rendering by computing the gradient of the
simulation function with respect to input physical parameters (e.g.,
material parameters). We have verified the effectiveness of our loss
strategy with ablation experiments and demonstrated the generality
and diversity of DiffSound for the inverse rendering of material
parameters, impact positions, and the shape of the sounding objects.
We hope our framework can unlock new multisensory applications
in the fields of robotics and embodied AI.

Nonetheless, our framework currently faces several challenges.
These include difficulties in handling complex shapes, particularly
thin shells, and limitations in accurately modeling heavily nonlin-
ear sounds. Additionally, if the distribution of an object’s damping
coefficients fluctuates significantly from low to high frequencies,
a simple interpolated damping curve may fail to accurately repre-
sent the true distribution. Furthermore, optimizing the rendering
speed to support real-time applications remains a critical priority.
In future endeavors, we aim to develop a more comprehensive and
efficient differentiable sound rendering framework, building upon
the foundation laid by this work.

ACKNOWLEDGMENTS

We thank all the anonymous reviewers for their helpful suggestions.
This work is supported by the National Key R&D Program of China
(No. 2022YFB3303403) and NSFC of China (No. 62172013).



DiffSound: Differentiable Modal Sound Rendering and Inverse Rendering SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

REFERENCES

Adam W. Bargteil and Elaine Cohen. 2014. Animation of Deformable Bodies with
Quadratic BéZier Finite Elements. ACM Trans. Graph. 33, 3, Article 27 (jun 2014),
10 pages.

Gaurav Bharaj, David I. W. Levin, James Tompkin, Yun Fei, Hanspeter Pfister, Wojciech
Matusik, and Changxi Zheng. 2015. Computational Design of Metallophone Contact
Sounds. ACM Trans. Graph. 34, 6, Article 223 (nov 2015), 13 pages.

Jeffrey N. Chadwick, Changxi Zheng, and Doug L. James. 2012. Precomputed Acceler-
ation Noise for Improved Rigid-Body Sound. ACM Trans. Graph. 31, 4, Article 103
(jul 2012), 9 pages.

Samuel Clarke, Ruohan Gao, Mason Wang, Mark Rau, Julia Xu, Mark Rau, Jui-Hsien
Wang, Doug James, and Jiajun Wu. 2023. RealImpact: A Dataset of Impact Sound
Fields for Real Objects. In Conference on Computer Vision and Pattern Recognition
(CVPR).

Samuel Clarke, Negin Heravi, Mark Rau, Ruohan Gao, Jiajun Wu, Doug James, and
Jeannette Bohg. 2021. DiffImpact: Differentiable Rendering and Identification of
Impact Sounds. In 5th Annual Conference on Robot Learning.

Simon Le Cleac’h, Hong-Xing Yu, Michelle Guo, Taylor A. Howell, Ruohan Gao,
Jiajun Wu, Zachary Manchester, and Mac Schwager. 2023. Differentiable Physics
Simulation of Dynamics-Augmented Neural Objects. Robotics and Automation
Letters (RA-L) (2023).

COMSOL AB, Stockholm, Sweden. 2005. Comsol multiphysics user’s guide.
Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Robust fairing via conformal

curvature flow. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1–10.
Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and J. Zico

Kolter. 2018. End-to-End Differentiable Physics for Learning and Control. In Ad-
vances in Neural Information Processing Systems, S. Bengio, H.Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.), Vol. 31. Curran Associates,
Inc.

Jonas Degrave, Michiel Hermans, Joni Dambre, et al. 2019. A differentiable physics
engine for deep learning in robotics. Frontiers in neurorobotics (2019), 6.

Akio Doi and Akio Koide. 1991. An efficient method of triangulating equi-valued
surfaces by using tetrahedral cells. IEICE TRANSACTIONS on Information and
Systems 74, 1 (1991), 214–224.

Tao Du, Kui Wu, Pingchuan Ma, Sebastien Wah, Andrew Spielberg, Daniela Rus, and
Wojciech Matusik. 2021. DiffPD: Differentiable Projective Dynamics. ACM Trans.
Graph. 41, 2, Article 13 (nov 2021), 21 pages.

Jesse Engel, Lamtharn (Hanoi) Hantrakul, Chenjie Gu, and Adam Roberts. 2020. DDSP:
Differentiable Digital Signal Processing. In International Conference on Learning
Representations.

Jean Feydy, Thibault Séjourné, François-Xavier Vialard, Shun-ichi Amari, Alain Trouve,
and Gabriel Peyré. 2019. Interpolating between Optimal Transport and MMD using
Sinkhorn Divergences. In The 22nd International Conference on Artificial Intelligence
and Statistics. 2681–2690.

Ruohan Gao, Yen-Yu Chang, Shivani Mall, Li Fei-Fei, and JiajunWu. 2021. ObjectFolder:
A Dataset of Objects with Implicit Visual, Auditory, and Tactile Representations. In
5th Annual Conference on Robot Learning.

Ruohan Gao, Yiming Dou, Hao Li, Tanmay Agarwal, Jeannette Bohg, Yunzhu Li, Li
Fei-Fei, and Jiajun Wu. 2023. The ObjectFolder Benchmark: Multisensory Object-
Centric Learning with Neural and Real Objects. In CVPR.

Ruohan Gao, Zilin Si, Yen-Yu Chang, Samuel Clarke, Jeannette Bohg, Li Fei-Fei, Wen-
zhen Yuan, and Jiajun Wu. 2022. ObjectFolder 2.0: A Multisensory Object Dataset
for Sim2Real Transfer. In CVPR.

Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz Bächer, Bernhard Thomaszewski,
and Stelian Coros. 2020. ADD: Analytically Differentiable Dynamics for Multi-Body
Systems with Frictional Contact. ACM Trans. Graph. 39, 6, Article 190 (nov 2020),
15 pages.

David Hahn, Pol Banzet, James M. Bern, and Stelian Coros. 2019. Real2Sim: Visco-
Elastic Parameter Estimation from Dynamic Motion. ACM Trans. Graph. 38, 6,
Article 236 (nov 2019), 13 pages.

Philipp Holl, Nils Thuerey, and Vladlen Koltun. 2020. Learning to Control PDEs with
Differentiable Physics. In International Conference on Learning Representations.

Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-
Kelley, and FrédoDurand. 2020. DiffTaichi: Differentiable Programming for Physical
Simulation. ICLR (2020).

Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B. Tenenbaum, William T.
Freeman, Jiajun Wu, Daniela Rus, and Wojciech Matusik. 2019. ChainQueen: A
Real-Time Differentiable Physical Simulator for Soft Robotics. In 2019 International
Conference on Robotics and Automation (ICRA) (Montreal, QC, Canada). IEEE Press,
6265–6271.

Thomas JR Hughes. 2012. The finite element method: linear static and dynamic finite
element analysis. Courier Corporation.

Doug L. James. 2016. Physically Based Sound for Computer Animation and Virtual
Environments. In ACM SIGGRAPH 2016 Courses (Anaheim, California) (SIGGRAPH
’16). Association for Computing Machinery, New York, NY, USA, Article 22, 8 pages.

Doug L James, Jernej Barbič, and Dinesh K Pai. 2006. Precomputed acoustic transfer:
output-sensitive, accurate sound generation for geometrically complex vibration

sources. ACM Transactions on Graphics (TOG) 25, 3 (2006), 987–995.
Xutong Jin, Sheng Li, Tianshu Qu, Dinesh Manocha, and Guoping Wang. 2020. Deep-

Modal: Real-Time Impact Sound Synthesis for Arbitrary Shapes. In Proceedings of
the 28th ACM International Conference on Multimedia (Seattle, WA, USA) (MM ’20).
Association for Computing Machinery, New York, NY, USA, 1171–1179.

Xutong Jin, Sheng Li, Guoping Wang, and Dinesh Manocha. 2022. NeuralSound:
Learning-Based Modal Sound Synthesis with Acoustic Transfer. ACM Trans. Graph.
41, 4, Article 121 (jul 2022), 15 pages.

Mark Kac. 1966. Can one hear the shape of a drum? The american mathematical
monthly 73, 4P2 (1966), 1–23.

Hao Li, Yizhi Zhang, Junzhe Zhu, Shaoxiong Wang, Michelle A. Lee, Huazhe Xu,
Edward Adelson, Li Fei-Fei, Ruohan Gao, and Jiajun Wu. 2022b. See, Hear, and Feel:
Smart Sensory Fusion for Robotic Manipulation. In CoRL.

Yifei Li, Tao Du, Kui Wu, Jie Xu, andWojciech Matusik. 2022a. DiffCloth: Differentiable
Cloth Simulation with Dry Frictional Contact. ACM Trans. Graph. 42, 1, Article 2
(oct 2022), 20 pages.

Junbang Liang, Ming Lin, and Vladlen Koltun. 2019. Differentiable Cloth Simulation for
Inverse Problems. In Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32.
Curran Associates, Inc.

Andreas Longva, Fabian Löschner, Tassilo Kugelstadt, José Antonio Fernández-
Fernández, and Jan Bender. 2020. Higher-Order Finite Elements for Embedded
Simulation. ACM Trans. Graph. 39, 6, Article 181 (nov 2020), 14 pages.

Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. 2004. Fluid Control
Using the Adjoint Method. 23, 3 (aug 2004), 449–456.

Johannes Mezger, Bernhard Thomaszewski, Simon Pabst, and Wolfgang Straßer. 2008.
Interactive Physically-Based Shape Editing. In Proceedings of the 2008 ACM Sympo-
sium on Solid and Physical Modeling (Stony Brook, New York) (SPM ’08). Association
for Computing Machinery, New York, NY, USA, 79–89.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis. In ECCV.

Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao, Wenzheng Chen, Alex
Evans, Thomas Müller, and Sanja Fidler. 2022. Extracting triangular 3d models,
materials, and lighting from images. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 8280–8290.

J. Krishna Murthy, Miles Macklin, Florian Golemo, Vikram Voleti, Linda Petrini, Martin
Weiss, Breandan Considine, Jérôme Parent-Lévesque, Kevin Xie, Kenny Erleben,
Liam Paull, Florian Shkurti, Derek Nowrouzezahrai, and Sanja Fidler. 2021. gradSim:
Differentiable simulation for system identification and visuomotor control. In
International Conference on Learning Representations.

James F. O’Brien, Chen Shen, and Christine M. Gatchalian. 2002. Synthesiz-
ing Sounds from Rigid-Body Simulations. In Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (San Antonio, Texas)
(SCA ’02). Association for Computing Machinery, New York, NY, USA, 175–181.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. Auto-
matic differentiation in PyTorch. (2017).

Jovan Popović, Steven M. Seitz, and Michael Erdmann. 2003. Motion Sketching for
Control of Rigid-Body Simulations. ACM Trans. Graph. 22, 4 (oct 2003), 1034–1054.

Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, and Ming C. Lin. 2020. Scalable Differ-
entiable Physics for Learning and Control. In Proceedings of the 37th International
Conference on Machine Learning (ICML’20). JMLR.org, Article 727, 10 pages.

Nikunj Raghuvanshi andMing C. Lin. 2006. Interactive Sound Synthesis for Large Scale
Environments. In Proceedings of the 2006 Symposium on Interactive 3D Graphics and
Games (Redwood City, California) (I3D ’06). Association for Computing Machinery,
New York, NY, USA, 101–108.

Zhimin Ren, Hengchin Yeh, and Ming C. Lin. 2013. Example-Guided Physically Based
Modal Sound Synthesis. ACM Trans. Graph. 32, 1, Article 1 (feb 2013), 16 pages.

Connor Schenck and Dieter Fox. 2018. Spnets: Differentiable fluid dynamics for deep
neural networks. In Conference on Robot Learning. PMLR, 317–335.

Teseo Schneider, Jérémie Dumas, Xifeng Gao, Mario Botsch, Daniele Panozzo, and
Denis Zorin. 2019. Poly-spline finite-elementmethod. ACMTransactions on Graphics
(TOG) 38, 3 (2019), 1–16.

Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and Sanja Fidler. 2021. Deep
marching tetrahedra: a hybrid representation for high-resolution 3d shape synthesis.
Advances in Neural Information Processing Systems 34 (2021), 6087–6101.

Eftychios Sifakis and Jernej Barbic. 2012. FEM Simulation of 3D Deformable Solids:
A Practitioner’s Guide to Theory, Discretization and Model Reduction. In ACM
SIGGRAPH 2012 Courses (Los Angeles, California) (SIGGRAPH ’12). Association for
Computing Machinery, New York, NY, USA, Article 20, 50 pages.

A. Sterling, N. Rewkowski, R. L. Klatzky, and M. C. Lin. 2019. Audio-Material
Reconstruction for Virtualized Reality Using a Probabilistic Damping Model.
IEEE Transactions on Visualization and Computer Graphics (2019), 1–1. https:
//doi.org/10.1109/TVCG.2019.2898822

Marc Toussaint, Kelsey R. Allen, Kevin A. Smith, and Joshua B. Tenenbaum. 2019.
Differentiable Physics and Stable Modes for Tool-Use and Manipulation Planning -
Extended Abtract. In Proceedings of the Twenty-Eighth International Joint Conference

https://doi.org/10.1109/TVCG.2019.2898822
https://doi.org/10.1109/TVCG.2019.2898822


SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Xutong Jin, Chenxi Xu, Ruohan Gao, Jiajun Wu, Guoping Wang, and Sheng Li

on Artificial Intelligence, IJCAI-19. International Joint Conferences on Artificial
Intelligence Organization, 6231–6235.

Adrien Treuille, Antoine McNamara, Zoran Popović, and Jos Stam. 2003. Keyframe
Control of Smoke Simulations. ACM Trans. Graph. 22, 3 (jul 2003), 716–723.

Kees van den Doel, Paul G. Kry, and Dinesh K. Pai. 2001. FoleyAutomatic: Physically-
Based Sound Effects for Interactive Simulation and Animation. In Proceedings of the
28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
’01). Association for Computing Machinery, New York, NY, USA, 537–544.

Kees Van den Doel and Dinesh K Pai. 1998. The sounds of physical shapes. Presence 7,
4 (1998), 382–395.

Chris Wojtan, Peter J. Mucha, and Greg Turk. 2006. Keyframe Control of Complex
Particle Systems Using the Adjoint Method. In Proceedings of the 2006 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (Vienna, Austria) (SCA
’06). Eurographics Association, Goslar, DEU, 15–23.

Jiankai Xing, Fujun Luan, Ling-Qi Yan, Xuejun Hu, Houde Qian, and Kun Xu. 2022.
Differentiable Rendering Using RGBXY Derivatives and Optimal Transport. ACM

Trans. Graph. 41, 6, Article 189 (nov 2022), 13 pages.
Jie Xu, Tao Chen, Lara Zlokapa, Michael Foshey, Wojciech Matusik, Shinjiro Sueda,

and Pulkit Agrawal. 2021. An End-to-End Differentiable Framework for Contact-
Aware Robot Design. In Robotics: Science and Systems XVII, Virtual Event, July
12-16, 2021, Dylan A. Shell, Marc Toussaint, and M. Ani Hsieh (Eds.). https:
//doi.org/10.15607/RSS.2021.XVII.008

Zhoutong Zhang, Qiujia Li, Zhengjia Huang, Jiajun Wu, Joshua B. Tenenbaum, and
William T. Freeman. 2017. Shape and Material from Sound. In Proceedings of the
31st International Conference on Neural Information Processing Systems (Long Beach,
California, USA) (NIPS’17). Curran Associates Inc., Red Hook, NY, USA, 1278–1288.

Changxi Zheng and Doug L. James. 2011. Toward High-Quality Modal Contact
Sound. In ACM SIGGRAPH 2011 Papers (Vancouver, British Columbia, Canada)
(SIGGRAPH ’11). Association for Computing Machinery, New York, NY, USA, Arti-
cle 38, 12 pages.

Bofang Zhu. 2018. The finite element method: fundamentals and applications in civil,
hydraulic, mechanical and aeronautical engineering. (2018).

https://doi.org/10.15607/RSS.2021.XVII.008
https://doi.org/10.15607/RSS.2021.XVII.008


DiffSound: Differentiable Modal Sound Rendering and Inverse Rendering SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

Ground
Truth

Initial Multi-scale
L1 Loss

Optimal Transport
Based Loss

Hybrid
Loss

Scaling Factor/RMSE 0.50 / - 1.00 / - 1.06 / 51.48 0.51 / 19.61 0.50 / 6.84

Scaling Factor/RMSE 2.00 / - 1.00 / - 1.05 / 31.85 2.11 / 24.04 2.00 / 2.12

Scaling Factor/RMSE 1.50 / - 1.00 / - 0.99 / 35.96 1.53 / 16.59 1.50 / 4.61

Ceramic

Iron

Steel

Scaling Factor/RMSE 0.70 / - 1.00 / - 0.93 / 34.50 0.71 / 9.18 0.70 / 4.73

Glass

Figure 4: Ablation study on loss functions. We show the spec-

trograms, scaling factors of eigenvalues, and RMSE in dif-

ferent setups. Across all setups, our hybrid loss function

consistently outperforms the one using only the multi-scale

L1 loss or optimal transport-based loss.

Figure 5: Visualization of the surface likelihood distribution

(probability heatmap) of the impact position on the object’s

surface for an example object. The predicted positions are

considered reasonable and accurate if they fall within the

region that is rotationally symmetric about the central axis

relative to the groundtruth.

Target
Convergence

Figure 6: Training process of estimating the damping curve.

We utilize 256 initial modes to comprehensively cover all tar-

get modes. After training, degraded modes are subsequently

removed.

Separately
Training

Simultaneously
Training

Target

Figure 7: The comparison of outcomes from separately train-

ing the damping factor and material parameters versus their

simultaneous training for a test object. The images clearly

demonstrate that the separate training strategy yields signifi-

cantly better results than the simultaneous approach, demon-

strating the effectiveness of our separate training strategy.
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Recorded TransferredRecorded Baseline 1 Ours

Figure 8: (Left) Material estimation from real-world recorded sound with our DiffSound method and the baseline of [Ren et al.

2013], which uses a fixed value of Poisson’s ratio in first-order FEM. (Right) Transfer of the material parameters optimized

from a ceramic bowl to a plate with the same material, with additional fine-tuning of the noise filter and mode amplitude.

Figure 9: Optimizing shape detail through sound mode (eigenvalues of the ground-truth model) and voxel grid (163). Our
approach demonstrates its capability to restore shape details with small Relative Error (RE) of eigenvalues. With an increase in

the number of modes, fitting all modes simultaneously becomes challenging, causing an increase in RE. However, more modes

enforce stricter constraints on shape optimization, yielding an optimized mesh that more closely resembles the ground truth

in detail. Three rightmost columns highlight our outcomes when applying coarser voxel constraints (83). Our approach can

visually synthesize geometric details that closely resemble the ground truth.

Figure 10: Shape morphing recovery from successive meshes. We annotate each shape with its corresponding target/predicted

interpolation coefficients. The prediction accuracy of these coefficients is assessed using Mean Absolute Error (MAE). Our

results demonstrate that our framework effectively predicts the mesh nearest to the target eigenvalue, along with its associated

shape.
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